Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Carbohydrate Polymers, (112), p. 145-151, 2014

DOI: 10.1016/j.carbpol.2014.05.075

Links

Tools

Export citation

Search in Google Scholar

From algal polysaccharides to cyclodextrins to stabilize a urease inhibitor.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

N-Butyl-phosphorotriamide (NBPT) is a fertilizer widely used for its urease inhibiting properties. Nevertheless, formulations currently commercialized are complex and do not avoid severe decrease of activity due to the low stability of the bioactive compound under acidic conditions. According to its structure, NPBT was thought to be able to interact with both polar additives, by its phosphoramide function, and hydrophobic ones, through its alkyl chain. In this context, and in order to simplify formulations of this bioactive compound, a panel of natural polysaccharides was studied, including starch, β-(1,3)-glucans, carraghenans and alginates. We also used cyclodextrins, characterized the most stable inclusion complex with α-cyclodextrin and evaluated the stability of NBPT thus protected against hydrolysis under acidic conditions.