Published in

De Gruyter Open, Nukleonika, 3(61), p. 379-384, 2016

DOI: 10.1515/nuka-2016-0063

Links

Tools

Export citation

Search in Google Scholar

Thoron emanation and exhalation of Slovenian soils determined by a PIC detector-equipped radon monitor

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract The health risk from thoron (Rn-220) is usually ignored owing to its short half-life (55.6 s), but the generated thoron decay products can cause a significant dose contribution. In this study, altogether 51 Slovenian soil samples were investigated using an accumulation chamber technique to obtain information about thoron exhalation features. The obtained (massic) thoron exhalation results varied between 6.9 and 149 mBq·kg−1·s−1 (average: 55.2 mBq·kg−1·s−1). The Th-232 content was determined using HPGe gamma spectrometry. The Th-232 activity concentration ranged between 9.3 and 161.7 Bq·kg−1 (average: 64.6 Bq·kg−1). The thoron emanation features were also calculated from the obtained results (2.9 to 21.2% with an average of 8.6%). The thoron exhalation and emanation properties were compared with the radon exhalation and emanation features determined in a previous study. It was found that there was no correlation between the radon and thoron emanation features, according to the obtained data. This can be explained by the different Ra-224 and Ra-226 distributions in the soil grains. As a result, the thoron emanation factor cannot be predicted from radon emanation and vice versa.