Published in

Nature Research, Scientific Reports, 1(6), 2016

DOI: 10.1038/srep33452

Links

Tools

Export citation

Search in Google Scholar

Identification of Viruses in Cases of Pediatric Acute Encephalitis and Encephalopathy Using Next-Generation Sequencing

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractAcute encephalitis/encephalopathy is a severe neurological syndrome that is occasionally associated with viral infection. Comprehensive virus detection assays are desirable because viral pathogens have not been identified in many cases. We evaluated the utility of next-generation sequencing (NGS) for detecting viruses in clinical samples of encephalitis/encephalopathy patients. We first determined the sensitivity and quantitative performance of NGS by comparing the NGS-determined number of sequences of human herpesvirus-6 (HHV-6) in clinical serum samples with the HHV-6 load measured using real-time PCR. HHV-6 was measured as it occasionally causes neurologic disorders in children. The sensitivity of NGS for detection of HHV-6 sequences was equivalent to that of real-time PCR, and the number of HHV-6 reads was significantly correlated with HHV-6 load. Next, we investigated the ability of NGS to detect viral sequences in 18 pediatric patients with acute encephalitis/encephalopathy of unknown etiology. A large number of Coxsackievirus A9 and mumps viral sequences were detected in the cerebrospinal fluid of 2 and 1 patients, respectively. In addition, Torque teno virus and Pepper mild mottle viral sequences were detected in the sera of one patient each. These data indicate that NGS is useful for detection of causative viruses in patients with pediatric encephalitis/encephalopathy.