Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(6), 2016

DOI: 10.1038/srep26765

Links

Tools

Export citation

Search in Google Scholar

Pcdh19 Loss-of-Function Increases Neuronal Migration In Vitro but is Dispensable for Brain Development in Mice

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractProtocadherin 19 (Pcdh19) is an X-linked gene belonging to the protocadherin superfamily, whose members are predominantly expressed in the central nervous system and have been implicated in cell-cell adhesion, axon guidance and dendrite self-avoidance. Heterozygous loss-of-function mutations in humans result in the childhood epilepsy disorder PCDH19 Girls Clustering Epilepsy (PCDH19 GCE) indicating that PCDH19 is required for brain development. However, understanding PCDH19 function in vivo has proven challenging and has not been studied in mammalian models. Here, we validate a murine Pcdh19 null allele in which a β-Geo reporter cassette is expressed under the control of the endogenous promoter. Analysis of β-Geo reporter activity revealed widespread but restricted expression of PCDH19 in embryonic, postnatal and adult brains. No gross morphological defects were identified in Pcdh19+/β-Geo and Pcdh19Y/β-Geo brains and the location of Pcdh19 null cells was normal. However, in vitro migration assays revealed that the motility of Pcdh19 null neurons was significantly elevated, potentially contributing to pathogenesis in patients with PCDH19 mutations. Overall our initial characterization of Pcdh19+/β-Geo, Pcdh19β-Geo/β-Geo and Pcdh19Y/β-Geomice reveals that despite widespread expression of Pcdh19 in the CNS and its role in human epilepsy, its function in mice is not essential for brain development.