Published in

American Association for the Advancement of Science, Science, 6283(352), p. 321-325, 2016

DOI: 10.1126/science.aaf2042

Links

Tools

Export citation

Search in Google Scholar

Nuclear quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Quantum effects in single hydrogen bonds Hydrogen bonds are a combination of electrostatics with a nuclear quantum contribution arising from the light mass of hydrogen nuclei. However, the quantum states of hydrogen nuclei are extremely sensitive to coupling with local environments, and these effects are broadened and averaged with conventional spectroscopic or diffraction techniques. Guo et al. show that quantum effects change the strength of individual hydrogen bonds in water layers adsorbed on a salt surface. These effects are revealed in inelastic tunneling spectra obtained with a chlorine-terminated scanning tunneling microscope tip. Science , this issue p. 321