Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(7), 2016

DOI: 10.1038/ncomms11318

Links

Tools

Export citation

Search in Google Scholar

Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractAt the ferroelectric surface, the broken translational symmetry induced bound charge should significantly alter the local atomic configurations. Experimentally revealing the atomic structure of ferroelectric surface, however, is very challenging due to the strong spatial variety between nano-sized domains, and strong interactions between the polarization and other structural parameters. Here, we study surface structures of Pb(Zr0.2Ti0.8)O3 thin film by using the annular bright-field imaging. We find that six atomic layers with suppressed polarization and a charged 180° domain wall are at negatively poled surfaces, no reconstruction exists at positively poled surfaces, and seven atomic layers with suppressed polarization and a charged 90° domain wall exist at nominally neutral surfaces in ferroelastic domains. Our results provide critical insights into engineering ferroelectric thin films, fine grain ceramics and surface chemistry devices. The state-of-the-art methodology demonstrated here can greatly advance our understanding of surface science for oxides.