Published in

American Association for the Advancement of Science, Science, 6318(354), p. 1414-1419, 2016

DOI: 10.1126/science.aaf9050

Links

Tools

Export citation

Search in Google Scholar

Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An activity lift for platinum Platinum is an excellent but expensive catalyst for the oxygen reduction reaction (ORR), which is critical for fuel cells. Alloying platinum with other metals can create shells of platinum on cores of less expensive metals, which increases its surface exposure, and compressive strain in the layer can also boost its activity (see the Perspective by Stephens et al. ). Bu et al. produced nanoplates—platinum-lead cores covered with platinum shells—that were in tensile strain. These nanoplates had high and stable ORR activity, which theory suggests arises from the strain optimizing the platinum-oxygen bond strength. Li et al. optimized both the amount of surface-exposed platinum and the specific activity. They made nanowires with a nickel oxide core and a platinum shell, annealed them to the metal alloy, and then leached out the nickel to form a rough surface. The mass activity was about double the best reported values from previous studies. Science , this issue p. 1410 , p. 1414 ; see also p. 1378