Dissemin is shutting down on January 1st, 2025

Links

Tools

Export citation

Search in Google Scholar

Rational Molecular Design for Achieving Persistent and Efficient Pure Organic Room-Temperature Phosphorescence

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Manipulation of the emission properties of pure organic room-temperature phosphors through molecular design is attractive but challenging. Tremendous efforts have been made to modulate their aggregation behaviors to suppress nonradiative decay in order to achieve efficient light emission and long lifetimes. However, success has been limited. To attain such a goal, here we present a rational design principle based on intrinsic molecular-structure engineering. Comprehensive investigations on the molecular orbitals revealed that an excited state with hybrid (n,π*) and (π,π*) configurations in appreciable proportion is desired. Tailoring the aromatic subunits in arylphenones can effectively tune the energy level and the orbital feature of the triplet exciton. Our experimental data reveal that a series of full-color pure organic phosphors with a balanced lifetime (up to 0.23 s) and efficiency (up to 36.0%) can be realized under ambient conditions, demonstrating the validity of our instructive design principle. © 2016 Elsevier Inc.