Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/srep44488

Links

Tools

Export citation

Search in Google Scholar

Coherent selection of invisible high-order electromagnetic excitations

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractFar-field spectroscopy and mapping of electromagnetic near-field distribution are the two dominant tools for analysis and characterization of the electromagnetic response in nanophotonics. Despite the widespread use, these methods can fail at identifying weak electromagnetic excitations masked by stronger neighboring excitations. This is particularly problematic in ultrafast nanophotonics, including optical sensing, nonlinear optics and nanolasers, where the broad resonant modes can overlap to a significant degree. Here, using plasmonic metamaterials, we demonstrate that coherent spectroscopy can conveniently isolate and detect such hidden high-order photonic excitations. Our results establish that the coherent spectroscopy is a powerful new tool. It complements the conventional methods for analysis of the electromagnetic response, and provides a new route to designing and characterizing novel photonic devices and materials.