Published in

American Chemical Society, Inorganic Chemistry, 12(55), p. 6047-6050, 2016

DOI: 10.1021/acs.inorgchem.6b00547

Links

Tools

Export citation

Search in Google Scholar

Insights on the (Auto)Photocatalysis of Ferritin

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Traditionally, ferritin has been considered a photocatalyst capable of photo-oxidizing organic molecules and transferring electrons to external electron acceptors when irradiated by UV-visible light. We have designed new approaches to resolve the uncertainties regarding its photocatalytical mechanism. Experiments with an Fe(II) chelator, an electrochromic indicator, and recombinant ferritin proteins indicate that the excited electrons at the conduction band of the ferritin core do not cross the protein shell. Instead, irradiation causes the electrons to reduce the ferrihydrite core to produce Fe(II) ions. These Fe(II) ions exit the protein shell to reduce electron acceptors. In the absence of electron acceptors or chelators, Fe(II) re-enters ferritin.