Published in

Elsevier, Clinical Immunology, 2(148), p. 227-236, 2013

DOI: 10.1016/j.clim.2013.04.014

Links

Tools

Export citation

Search in Google Scholar

Differentiating the roles of STAT5B and STAT5A in human CD4+ T cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

STAT5A and STAT5B are highly homologous proteins whose distinctive roles in human immunity remain unclear. However, STAT5A sufficiency cannot compensate for STAT5B defects, and human STAT5B deficiency, a rare autosomal recessive primary immunodeficiency, is characterized by chronic lung disease, growth failure and autoimmunity associated with regulatory T cell (Treg) reduction. We therefore hypothesized that STAT5A and STAT5B play unique roles in CD4+ T cells. Upon knocking down STAT5A or STAT5B in human primary T cells, we found differentially regulated expression of FOXP3 and IL-2R in STAT5B knockdown T cells and down-regulated Bcl-X only in STAT5A knockdown T cells. Functional ex vivo studies in homozygous STAT5B-deficient patients showed reduced FOXP3 expression with impaired regulatory function of STAT5B-null Treg cells, also of increased memory phenotype. These results indicate that STAT5B and STAT5A act partly as non-redundant transcription factors and that STAT5B is more critical for Treg maintenance and function in humans.