Published in

American Chemical Society, Biomacromolecules, 3(18), p. 747-756, 2017

DOI: 10.1021/acs.biomac.6b01597

Links

Tools

Export citation

Search in Google Scholar

Revealing the Compact Structure of Lactic Acid Bacterial Heteroexopolysaccharides by SAXS and DLS

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Molecular structures of exopolysaccharides are required to understand their functions and the relationships between the structure and physical and rheological properties. Small-angle X-ray scattering and dynamic light scattering were used in conjunction with molecular modeling to characterize solution structures of three lactic acid bacterial hetero-exopolysaccharides (HePS-1, HePS-2 and HePS-3). Values of radius of gyration R G , cross-sectional radius of gyration RXS, approximate length L and hydrodynamic diameter were not directly proportional to the molar mass and indicated the HePSs adopted a compact coil-like rather than an extended conformation. Constrained molecular modeling of 15,000 randomised HePS-1 conformers resulted in five best-fit structures with R factor of 3.94.6% revealing random coil-like structure. Φ and Ψ angle analysis of glycosidic linkages in HePS-1 structures suggests Galf residues significantly influence the conformation. Ab initio scattering modeling of HePS-2 and HePS-3 gave excellent curve fittings with χ 2 of 0.43 and 0.34 for best-fit models, respectively, compatible with coil-like conformation. The findings disclose solution behaviour of HePS relevant for their interactions with biomacromolecules e.g. milk proteins.