Published in

Wiley, Chemistry - A European Journal, 42(22), p. 14902-14911, 2016

DOI: 10.1002/chem.201602209

Links

Tools

Export citation

Search in Google Scholar

A Highly Selective Potassium Sensor for the Detection of Potassium in Living Tissues

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The development of highly selective sensors for potassium is of great interest in biology. Two new hydrosoluble potassium sensors (Calix-COU-Alkyne and Calix-COU-Am) based on a calix[4]arene bis(crown-6) and an extended coumarin were synthesized and characterized. The photophysical properties and complexation studies of these compounds have been investigated and show high molar extinction coefficients and high fluorescence quantum yields. Upon complexation with potassium in the millimolar concentration range, an increase of one- and two-photon fluorescence emission is detected. A twofold fluorescence enhancement is observed upon excitation at λ=405 nm. The ligands present excellent selectivity for potassium in the presence of various competitive cations in water and in a physiological medium. The photophysical properties are not affected by the presence of a large amount of competing cations (Na+ , Ca2+ , Mg2+ , etc.). Ex vivo measurements on mouse hippocampal slices show that Calix-COU-Alkyne accumulates extracellularly and does not alter the neuronal activity. Furthermore, the sensor can be utilized to monitor slow extracellular K+ increase induced by inhibition of K+ entry into the cells.