Links

Tools

Export citation

Search in Google Scholar

Ecosimnet: A Framework for Ecological Simulations

Proceedings article published in 2017 by A. Pereira, Lp P. Reis, P. Duarte ORCID
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Simulating ecological models is always a difficult task, not only because of its complexity but also due to the slowness associated with each simulation run as more variables and processes are incorporated into the complex ecosystem model. The computational overhead becomes a very important limitation for model calibration and scenario analysis, due to the large number of model runs generally required. This paper presents a framework for ecological simulations that intends to increase system performance through the ability to do parallel simulations, allowing the joint analysis of different scenarios. This framework evolved from the usage of one simulator and several agents, that configure the simulator to run specific scenarios, related to possible ecosystem management options, one at a time, to the use of several simulators, each one simulating a different scenario concurrently, speeding up the process and reducing the time for decision between the alternative scenarios proposed by the agents. This approach was tested with a farmer agent that seeks optimal combinations of bivalve seeding areas in a large mariculture region, maximizing the production without exceeding the total allowed seeding area. Results obtained showed that the time needed to acquire a "near" optimal solution decreases proportionally with the number of simulators in the network, improving the performance of the agentapos;s optimization process, without compromising its rationality. This work is a step forward towards an agent based decision support system to optimize complex environmental problems. ; Simulating ecological models is always a difficult task, not only because of its complexity but also due to the slowness associated with each simulation run as more variables and processes are incorporated into the complex ecosystem model. The computational overhead becomes a very important limitation for model calibration and scenario analysis, due to the large number of model runs generally required. This paper presents a framework for ecological simulations that intends to increase system performance through the ability to do parallel simulations, allowing the joint analysis of different scenarios. This framework evolved from the usage of one simulator and several agents, that configure the simulator to run specific scenarios, related to possible ecosystem management options, one at a time, to the use of several simulators, each one simulating a different scenario concurrently, speeding up the process and reducing the time for decision between the alternative scenarios proposed by the agents. This approach was tested with a farmer agent that seeks optimal combinations of bivalve seeding areas in a large mariculture region, maximizing the production without exceeding the total allowed seeding area. Results obtained showed that the time needed to acquire a "near" optimal solution decreases proportionally with the number of simulators in the network, improving the performance of the agentapos;s optimization process, without compromising its rationality. This work is a step forward towards an agent based decision support system to optimize complex environmental problems.