Published in

American Chemical Society, ACS Nano, 10(10), p. 9353-9360, 2016

DOI: 10.1021/acsnano.6b04107

Links

Tools

Export citation

Search in Google Scholar

Relay-Like Exchange Mechanism through a Spin Radical between TbPc2 Molecules and Graphene/Ni(111) Substrates

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We investigate the electronic and magnetic properties of TbPc2 single ion magnets adsorbed on a graphene/Ni(111) substrate, by density functional theory (DFT), ab initio complete active space self-consistent field calculations, and X-ray magnetic circular dichroism (XMCD) experiments. Despite the presence of the graphene decoupling layer, a sizable antiferromagnetic coupling between Tb and Ni is observed in the XMCD experiments. The molecule-surface interaction is rationalized by the DFT analysis and is found to follow a relay-like communication pathway, where the radical spin on the organic Pc ligands mediates the interaction between Tb ion and Ni substrate spins. A model Hamiltonian which explicitly takes into account the presence of the spin radical is then developed, and the different magnetic interactions at play are assessed by first-principle calculations and by comparing the calculated magnetization curves with XMCD data. The relay-like mechanism is at the heart of the process through which the spin information contained in the Tb ion is sensed and exploited in carbon-based molecular spintronics devices.