Links

Tools

Export citation

Search in Google Scholar

The influence of photovoltaics on roof thermal performance - an analysis of convective heat transfer coefficients

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

In a Mediterranean climate, given the absence of snow, flat roofs are typical of both vernacular and modern architecture. Thermal mass, cross ventilation and night time cooling are standard passive design aids that inhibit indoor temperature build-up on hot summer days. Such flat roofs provide a golden opportunity for free-orientation of PV (photovoltaic) panels, unlike pitched roofs. There is established scientific evidence that their presence on flat roofs also helps curtail surface temperatures of the heavy mass structure, by means of (i) solar shading and (ii) convective cooling at given angles. Both factors in turn lower the convective heat transfer coefficient (CHTC) of the roof structure, thus inhibiting early seasonal temperature build-up. This contributes to lower cooling loads, thus reducing both the carbon footprint of the building as well as lowering energy costs for the owners. Such a holistic contribution is deemed to uphold the social, environmental and economic challenges of today. This study purports to do just that. Through CFD (computational fluid dynamics) this study investigates the effect of flow fields over a typical flat roof building mass in a free field for a range of wind velocities. Results indicate that for a higher wind speed, the convective cooling is more significant than at lower wind speeds. This will in turn influence the elemental U-value of the roof structure, thus reducing cooling loads indoors. ; peer-reviewed