Dissemin is shutting down on January 1st, 2025

Links

Tools

Export citation

Search in Google Scholar

Experimental assessment of oxygen homeostasis during acute hemodilution: the integrated role of hemoglobin concentration and blood pressure

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Background : Low hemoglobin concentration (Hb) and low mean arterial blood pressure (MAP) impact outcomes in critically ill patients. We utilized an experimental model of “normotensive” vs. “hypotensive” acute hemodilutional anemia to test whether optimal tissue perfusion is dependent on both Hb and MAP during acute blood loss and fluid resuscitation, and to assess the value of direct measurements of the partial pressure of oxygen in tissue (PtO2). ; Methods : Twenty-nine anesthetized rats underwent 40% isovolemic hemodilution (1:1) (or sham-hemodilution control, n = 4) with either hydroxyethyl starch (HES) (n = 14, normotensive anemia) or saline (n = 11, hypotensive anemia) to reach a target Hb value near 70 g/L. The partial pressure of oxygen in the brain and skeletal muscle tissue (PtO2) were measured by phosphorescence quenching of oxygen using G4 Oxyphor. Mean arterial pressure (MAP), heart rate, temperature, arterial and venous co-oximetry, blood gases, and lactate were assessed at baseline and for 60 min after hemodilution. Cardiac output (CO) was measured at baseline and immediately after hemodilution. Data were analyzed by repeated measures two-way ANOVA. ; Results : Following “normotensive” hemodilution with HES, Hb was reduced to 66 ± 6 g/L, CO increased (p