Published in

Cell Press, Cell Metabolism, 1(24), p. 104-117, 2016

DOI: 10.1016/j.cmet.2016.06.007

Links

Tools

Export citation

Search in Google Scholar

Mitochondrial Biogenesis and Proteome Remodeling Promote One-Carbon Metabolism for T Cell Activation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Naïve T cell stimulation activates anabolic metabolism to fuel the transition from quiescence to growth and proliferation. Here we show that naïve CD4+ T cell activation induces a unique program of mitochondrial biogenesis and remodeling. Using mass spectrometry, we quantified protein dynamics during T cell activation. We identified substantial remodeling of the mitochondrial proteome over the first 24 hr of T cell activation to generate mitochondria with a distinct metabolic signature, with one carbon metabolism as the most induced pathway. Salvage pathways and mitochondrial one carbon metabolism, fed by serine, contribute to purine and thymidine synthesis to enable T cell proliferation and survival. Genetic inhibition of the mitochondrial serine catabolic enzyme SHMT2 impaired T cell survival in culture, and antigen-specific T cell abundance in vivo. Thus, during T cell activation, mitochondrial proteome remodeling generates specialized mitochondria with enhanced one carbon metabolism that is critical for T cell activation and survival.