Published in

Portland Press, Bioscience Reports, 1(37), 2017

DOI: 10.1042/bsr20160514

Links

Tools

Export citation

Search in Google Scholar

Cross-talks via mTORC2 can explain enhanced activation in response to insulin in diabetic patients

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The molecular mechanisms of insulin resistance in Type 2 diabetes have been extensively studied in primary human adipocytes, and mathematical modelling has clarified the central role of attenuation of mammalian target of rapamycin (mTOR) complex 1 (mTORC1) activity in the diabetic state. Attenuation of mTORC1 in diabetes quells insulin-signalling network-wide, except for the mTOR in complex 2 (mTORC2)-catalysed phosphorylation of protein kinase B (PKB) at Ser473 (PKB-S473P), which is increased. This unique increase could potentially be explained by feedback and interbranch cross-talk signals. To examine if such mechanisms operate in adipocytes, we herein analysed data from an unbiased phosphoproteomic screen in 3T3-L1 adipocytes. Using a mathematical modelling approach, we showed that a negative signal from mTORC1-p70 S6 kinase (S6K) to rictor–mTORC2 in combination with a positive signal from PKB to SIN1–mTORC2 are compatible with the experimental data. This combined cross-branch signalling predicted an increased PKB-S473P in response to attenuation of mTORC1 – a distinguishing feature of the insulin resistant state in human adipocytes. This aspect of insulin signalling was then verified for our comprehensive model of insulin signalling in human adipocytes. Introduction of the cross-branch signals was compatible with all data for insulin signalling in human adipocytes, and the resulting model can explain all data network-wide, including the increased PKB-S473P in the diabetic state. Our approach was to first identify potential mechanisms in data from a phosphoproteomic screen in a cell line, and then verify such mechanisms in primary human cells, which demonstrates how an unbiased approach can support a direct knowledge-based study.