Published in

Springer, Biogeochemistry, 1-2(135), p. 49-67, 2017

DOI: 10.1007/s10533-017-0309-x

Links

Tools

Export citation

Search in Google Scholar

Stability of dissolved and soluble Fe(II) in shelf sediment pore waters and release to an oxic water column

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Shelf sediments underlying temperate and oxic waters of the Celtic Sea (NW European Shelf) were found to have shallow oxygen penetrations depths from late spring to late summer (2.2 to 5.8 mm below seafloor) with the shallowest during/after the spring-bloom (mid-April to mid-May) when the organic carbon content was highest. Sediment porewater dissolved iron (dFe, 85 %) consisted of reduced Fe(II) and gradually increased from 0.4 to 15 μM at the sediment surface to ~100 to 170 μM at about 6 cm depth. During the late spring this Fe(II) was found to be mainly present as soluble Fe(II) (> 85 % sFe, 7 hours. Iron(II) oxidation experiments in core top and bottom waters also showed removal from solution but at rates up to 5-times slower than predicted from theoretical reaction kinetics. These data imply the presence of ligands capable of complexing Fe(II) and supressing oxidation rates. The lower oxidation rate allows more time for the diffusion of Fe(II) from the sediments into the overlying water column. Modelling indicates significant diffusive fluxes of Fe(II) (on the order of 23-31 μmol m-2 d-1) are possible during late spring when oxygen penetration depths are shallow, and pore water Fe(II) concentrations are highest. In the water column this stabilised Fe(II) will gradually be oxidised and become part of the dFe(III) pool. Thus oxic continental shelves can supply dFe to the water column, which is enhanced during a small period of the year after phytoplankton bloom events when organic matter is transferred to the seafloor. This input is based on conservative assumptions for solute exchange (diffusionreaction), whereas (bio)physical advection and resuspension events are likely to accelerate these solute exchanges in shelf-seas.