Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Physical Chemistry Letters, 15(7), p. 2915-2920, 2016

DOI: 10.1021/acs.jpclett.6b01268

Links

Tools

Export citation

Search in Google Scholar

Two's Company, Three's a Crowd: Exciton Localization in Cofacially Arrayed Polyfluorenes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Understanding the mechanisms of long-range energy transfer through polychromophoric assemblies is critically important in photovoltaics and biochemical systems. Using a set of cofacially arrayed polyfluorenes (Fn), we investigate the mechanism of (singlet) exciton delocalization in π-stacked polychromophoric assemblies. Calculations reveal that effective stabilization of an excimeric state requires an ideal sandwich-like arrangement; yet surprisingly, emission spectroscopy indicates that exciton delocalization is limited to only two fluorene units for all n. Herein, we show that delocalization is determined by the interplay between the energetic gain from delocalization, which quickly saturates beyond two units in larger Fn, and an energetic penalty associated with structural reorganization, which increases linearly with n. With these insights, we propose a hopping mechanism for exciton transfer, based upon the presence of multiple excimeric tautomers of similar energy in larger polyfluorenes (n ≥ 4) together with the anticipated low thermal barrier of their interconversion.