Published in

The Company of Biologists, Biology Open, 2(6), p. 307-308, 2017

DOI: 10.1242/bio.023143

Links

Tools

Export citation

Search in Google Scholar

Response to ‘On the importance of understanding physiology when estimating energetics in cetaceans’

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biology Open 6 (2017): 307-308, doi:10.1242/bio.023143. ; We are grateful for the interest in our paper by two eminent physiologists and hope this response to their comments will clarify the objectives of our paper. The analysis in Fahlman et al. (2016) was not intended to provide an accurate method to estimate field metabolic rate (FMR) in large mysticetes; the objective was to measure the dynamic changes in physiology associated with recovery from exercise and show that they are important to consider when estimating FMR. While static averages can provide useful estimates of FMR for a variety of situations, these need to be appropriately selected. For example, we illustrate that it is not possible to use selected average values chosen from excised tissues or resting animals (as in Blix and Folkow, 1995) to provide meaningful estimates of FMR for animals at different activities (i.e. the dolphins in our study). Our study highlights the importance of temporal variation in physiological models: the Blix and Folkow (1995) estimates rely on the assumption that only breathing frequency (fR) changes with activity, while we argue that both the tidal volume (VT) and mixed lung O2 content also vary with activity and recovery from a dive (Ridgway et al., 1969). Including this variation in all three parameters reduces temporal uncertainty in the same conceptual model (see Eqn. 1 in Fahlman et al., 2016).