Dissemin is shutting down on January 1st, 2025

Published in

American Society of Civil Engineers, Journal of Engineering Mechanics, 10(142), 2016

DOI: 10.1061/(asce)em.1943-7889.0001130

Links

Tools

Export citation

Search in Google Scholar

New tension-compression damage model for complex analysis of concrete structures

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A new damage model, based on continuum damage mechanics and simulating the opening, closing, and reopening of cracks in concrete using only one surface of discontinuity, is proposed in this article. The model complies with the thermodynamics principles of nonreversible, isothermal, and adiabatic processes. Two scalar internal variables have been defined: a tensile damage variable d+d+ and a compressive damage variable d-d-; the threshold of damage is controlled by only one surface of discontinuity and a new parameter controlling the damage variable that should be activated. This new parameter represents the ratio of tensile stress to compressive stress in the damaged material. The continuity of response under complex loads, which is one of the aims of this work, is ensured. An adequate response under different types of loads leads to the conclusion that the proposed model provides a powerful tool to numerically analyze reinforced concrete structures. Validation and illustrative examples are included in the article. ; Peer Reviewed ; Postprint (author's final draft)