Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Acta Biomaterialia, (53), p. 389-398, 2017

DOI: 10.1016/j.actbio.2017.01.071

Links

Tools

Export citation

Search in Google Scholar

Generation of anti-inflammatory macrophages for implants and regenerative medicine using self-standing release systems with a phenotype-fixing cytokine cocktail formulation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The immediate tissue microenvironment of implanted biomedical devices and engineered tissues is highly influential on their long term fate and efficacy. The creation of a long-term anti-inflammatory microenvironment around implants and artificial tissues can facilitate their integration. Macrophages are highly plastic cells that define the tissue reactions on the implanted material. Local control of macrophage phenotype by long-term fixation of their healing activities and suppression of inflammatory reactions are required to improve implant acceptance. Herein, we describe the development of a cytokine cocktail (M2Ct) that induces stable M2-like macrophage phenotype with significantly decreased pro-inflammatory cytokine and increased anti-inflammatory cytokine secretion profile. The positive effect of the M2Ct was shown in an in vitro wound healing model; where M2Ct facilitated wound closure by human fibroblasts in co-culture conditions. Using a model for induction of inflammation by LPS we have shown that the M2Ct phenotype is stable for 12 days. However, in the absence of M2Ct in the medium macrophages underwent rapid pro-inflammatory re-programming upon IFNg stimulation. Therefore, loading and release of the cytokine cocktail from a self-standing, transferable gelatin/tyraminated hyaluronic acid based release system was developed to stabilize macrophage phenotype for in vivo applications in implantation and tissue engineering. The M2Ct cytokine cocktail retained its anti-inflammatory activity in controlled release conditions. Our data indicate that the direct application of a potent M2 inducing cytokine cocktail in a transferable release system can significantly improve the long term functionality of biomedical devices by decreasing pro-inflammatory cytokine secretion and increasing the rate of wound healing.