Links

Tools

Export citation

Search in Google Scholar

A Catalytic Etching-Wetting-Dewetting Mechanism in the Formation of Hollow Graphitic Carbon Fiber

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Hollow graphitic carbon nanofibers (HGCNFs) have great promise for many important applications, such as catalysis, sensors, energy conversion, gas storage, and electronic devices. Here, we report a catalytic etching-wetting-dewetting mechanism in synthesizing HGCNFs with both hollow spherical-like and tunnel-like pores. With in situ transmission electron microscope imaging, we show that the spherical pores are formed by the evaporation of encapsulated Ni on the surface of amorphous carbon nanofiber and that hollow tunnels are developed through continuous etching of the amorphous carbon under catalysis of Ni nanoparticles. Theoretical calculations and simulations reveal that continuous tunnel etching is driven by the wetting-to-dewetting transition of the Ni-tunnel wall interaction during the catalytic graphitization of the amorphous carbon wall. In a typical application, we demonstrate that the synthesized HGCNFs, with a capacity about three times higher than that of their non-hollow counterparts, are excellent potential candidates for CO2 capture.