Published in

Elsevier, Journal of Photochemistry and Photobiology A: Chemistry, (332), p. 534-545

DOI: 10.1016/j.jphotochem.2016.10.003

Links

Tools

Export citation

Search in Google Scholar

Tailored routes for home-made Bi-doped ZnO nanoparticles : Photocatalytic performances towards o-toluidine, a toxic water pollutant

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Herein we report the photodegradation of highly toxic o-toluidine in aqueous media (under UV irradiation), by using home-made bare and bismuth-doped ZnO nanoparticles. The latter powder was prepared by both a traditional impregnation method and by an innovative sol-gel synthesis, obtained using bismuth nitrate as precursor. Moreover, synthetic conditions (such as zinc salts and medium acidity) were varied in order to obtain different semiconductor nanopowders with diverse physicochemical properties and, hence, photocatalytic performances. Both the disappearance and the mineralization of the pollutant molecule were followed by Linear Sweep Voltammetry and Total Organic Carbon techniques, respectively. Photocatalysis by-products were then identified by HPLC-MS (on eluates, after 3h and 6 h) and ATR-FTIR (on used nanopowders) analyses. Thus, a new photodegradation pathway (with azo dimer derivatives in the first step) has, been proposed. Bi-impregnated samples show high degree of mineralization, reducing the stability of the intermediates.