Springer Nature [academic journals on nature.com], International Journal of Obesity, 2(41), p. 289-298, 2016
DOI: 10.1038/ijo.2016.191
Full text: Download
Background/objectives:In the last decade, a strict link between epigenetics and metabolism has been demonstrated. Histone deacetylases (HDACs) have emerged as key epigenetic regulators involved in metabolic homeostasis in normal and pathologic conditions. Here we investigated the effect of the class I HDAC inhibitor MS-275 in a model of obesity induced by a high-fat diet (HFD).Methods:C57BL6/J male mice were fed HFD for 17 weeks and then randomized in two groups, treated intraperitoneally with vehicle dimethylsulfoxide (DMSO) or with the class I selective HDAC inhibitor MS-275 every other day for 22 days. Glucose tolerance test and measurement of body temperature during cold exposure were performed. Adipose tissues and liver were phenotypically characterized through histological analysis. Gene and protein expression analysis of brown and white adipose tissues (WATs) were performed.Results:MS-275 treated mice showed 10% reduction of body weight, lower adipocyte size and improved glucose tolerance. Inhibition of class I HDAC determined reduction of adipocyte size and of fat mass, paralleled by higher expression of adipose functionality markers and by increased rate of lipolysis and fatty acid β-oxidation. MS-275 also promoted thermogenic capacity, related to 'browning' of visceral and subcutaneous WAT, showing increased expression of uncoupling protein 1. In brown adipose tissue, we observed limited effects on gene expression and only reduction of brown adipocyte size.Conclusions:This study provides evidence that class I HDAC inhibition stimulated functionality and oxidative potential of adipose tissue, improving glucose tolerance and ameliorating the metabolic profile in diet-induced obese mice.