Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Nano Letters, 5(16), p. 3085-3093, 2016

DOI: 10.1021/acs.nanolett.6b00251

Links

Tools

Export citation

Search in Google Scholar

Long-Lived Hot Carriers in III–V Nanowires

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Heat management mechanisms play a pivotal role in driving the design of nanowire (NW)-based devices. In particular, the rate at which charge carriers cool down after an external excitation is crucial for the efficiency of solar cells, lasers, and high-speed transistors. Here, we investigate the thermalization properties of photogenerated carriers by continuous-wave (cw) photoluminescence (PL) in InP and GaAs NWs. A quantitative analysis of the PL spectra recorded up to 310 K shows that carriers can thermalize at a temperature much higher than that of the lattice. We find that the mismatch between carrier and lattice temperature, Δ T , increases exponentially with lattice temperature and depends inversely on the NW diameter. Δ T is instead independent of other NW characteristics, such as crystal structure (wurtzite vs zincblende), chemical composition (InP vs GaAs), shape (tapered vs columnar NWs), and growth method (vapor–liquid–solid vs selective-area growth). Remarkably, carrier temperatures as high as 500 K are reached at the lattice temperature of 310 K in NWs with ∼70 nm diameter. While a population of nonequilibrium carriers, usually referred to as “hot carriers”, is routinely generated by high-power laser pulses and detected by ultrafast spectroscopy, it is quite remarkable that it can be observed in cw PL measurements, when a steady-state population of carriers is established. Time-resolved PL measurements show that even in the thinnest NWs carriers have enough time (∼1 ns) after photoexcitation to interact with phonons and thus to release their excess energy. Nevertheless, the inability of carriers to reach a full thermal equilibrium with the lattice points to inhibited phonon emission primarily caused by the large surface-to-volume ratio of small diameter NWs.