Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/srep41725

Links

Tools

Export citation

Search in Google Scholar

Strain Dependent Electronic Structure and Band Offset Tuning at Heterointerfaces of ASnO3 (A=Ca, Sr, and Ba) and SrTiO3

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe valence band (VB) electronic structure and VB alignments at heterointerfaces of strained epitaxial stannate ASnO3 (A=Ca, Sr, and Ba) thin films are characterized using in situ X-ray and ultraviolet photoelectron spectroscopies, with band gaps evaluated using spectroscopic ellipsometry. Scanning transmission electron microscopy with geometric phase analysis is used to resolve strain at atomic resolution. The VB electronic structure is strain state dependent in a manner that correlated with a directional change in Sn-O bond lengths with strain. However, VB offsets are found not to vary significantly with strain, which resulted in ascribing most of the difference in band alignment, due to a change in the band gaps with strain, to the conduction band edge. Our results reveal significant strain tuning of conduction band offsets using epitaxial buffer layers, with strain-induced offset differences as large as 0.6 eV possible for SrSnO3. Such large conduction band offset tunability through elastic strain control may provide a pathway to minimize the loss of charge confinement in 2-dimensional electron gases and enhance the performance of photoelectrochemical stannate-based devices.