Published in

MDPI, Applied Sciences, 2(7), p. 188

DOI: 10.3390/app7020188

Links

Tools

Export citation

Search in Google Scholar

Strain Transfer Analysis of a Clamped Fiber Bragg Grating Sensor

Journal article published in 2017 by Li Sun, Chuang Li, Jun Li ORCID, Chunwei Zhang, Xiaosu Ding
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Clamped fiber Bragg grating (FBG) sensors have been widely applied in engineering strain measurements due to their advantages of high flexibility and efficiency. However, due to the existence of the interlayer, the strain measured by the encapsulated FBG sensor is not equal to the strain of the host material, which causes strain measurement errors. In this paper, the strain transfer analysis of a clamped FBG sensor based on the shear-lag theory is conducted to improve the accuracy of strain measurements. A novel theoretical model for the axial strain distribution of a clamped FBG sensor is proposed. It is also discussed how the gauge ratio and interlayer thickness affect the strain transfer rate. The accuracy of the proposed theoretical model is verified by experimental tensile tests. The theoretical value of the strain transfer rate matches well with the tested value.