Published in

Wiley, Yeast, 5(31), p. 167-178, 2014

DOI: 10.1002/yea.3007

Links

Tools

Export citation

Search in Google Scholar

Identification and characterization of a drug-sensitive strain enables puromycin-based translational assays inSaccharomyces cerevisiae: Puromycin sensitivity inS. cerevisiae

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Puromycin is an aminonucleoside antibiotic with structural similarity to aminoacyl tRNA. This structure allows the drug to bind the ribosomal A-site and incorporate into nascent polypeptides causing chain termination, ribosomal subunit dissociation, and widespread translational arrest at high concentrations. In contrast, at sufficiently low concentrations, puromycin incorporates primarily at the C-terminus of proteins. While a number of techniques utilize puromycin incorporation as a tool for probing translational activity in vivo, these methods cannot be applied in yeasts that are insensitive to puromycin. Here, we describe a mutant strain of the yeast Saccharomyces cerevisiae that is sensitive to puromycin and characterize the cellular response to the drug. Puromycin inhibits the growth of yeast cells mutant for erg6∆, pdr1∆, and pdr3∆ (EPP) on both solid and liquid media. Puromycin also induces the aggregation of the cytoplasmic processing body component Edc3 in the mutant strain. We establish that puromycin is rapidly incorporated into yeast proteins and test the effects of puromycin on translation in vivo. This work establishes the EPP strain as a valuable tool for implementing puromycin-based assays in yeast, which will enable new avenues of inquiry into protein production and maturation. This article is protected by copyright. All rights reserved.