Dissemin is shutting down on January 1st, 2025

Published in

The Astronomical Journal, 3(153), p. 115

DOI: 10.3847/1538-3881/153/3/115

Links

Tools

Export citation

Search in Google Scholar

VLT/SINFONI Observations of Spitzer/MIPSGAL 24 μm Circumstellar Shells: Revealing the Natures of Their Central Sources

Journal article published in 2017 by K. M. Silva ORCID, N. Flagey, A. Noriega-Crespo, S. Carey ORCID, A. Ingallinera ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present Very Large Telescope/Spectrograph for INtegral Field Observations in the Near Infrared H- and K-band spectra of potential central stars within the inner 8''-by-8'' regions of 55 MIPSGAL "bubbles" (MBs), sub-arcminute circumstellar shells discovered in the mid-IR survey of the Galactic plane with Spitzer/MIPS. At magnitudes brighter than 15, we detect a total of 230 stars in the K band and 179 stars in the H band. We spectrally identify 145 stars in all but three MBs, with average magnitudes of 13.8 and 12.7 respectively, using spectral libraries and previous studies of near-IR stellar spectra. We also use tabulated intrinsic stellar magnitudes and colors to derive distances and extinction values, and to better constrain the classifications of the stars. We reliably identify the central sources for 21 of the 55 MBs, which we classify as follows: one Wolf–Rayet, three luminous blue variable candidates, four early-type (O to F), and 15 late-type (G to M) stars. The 21 central sources are, on average, one magnitude fainter than these in the most recent study of MBs, and we notice a significant drop in the fraction of massive star candidates. For the 34 remaining MBs in our sample, we are unable to identify the central sources due to confusion, low spectroscopic signal-to-noise ratio, and/or lack of detections in the images near the centers of the bubbles. We discuss how our findings compare with previous studies and support the trend, for the most part, between the shells' morphologies in the mid-IR and central sources spectral types.