Published in

The Astronomical Journal, 3(156), p. 99

DOI: 10.3847/1538-3881/aad230

Links

Tools

Export citation

Search in Google Scholar

An update to the EVEREST K2 pipeline: Short cadence, saturated stars, and Kepler-like photometry down to Kp = 15

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present an update to the EVEREST K2 pipeline that addresses various limitations in the previous version and improves the photometric precision of the de-trended light curves. We develop a fast regularization scheme for third order pixel level decorrelation (PLD) and adapt the algorithm to include the PLD vectors of neighboring stars to enhance the predictive power of the model and minimize overfitting, particularly for faint stars. We also modify PLD to work for saturated stars and improve its performance on extremely variable stars. On average, EVEREST 2.0 light curves have 10-20% higher photometric precision than those in the previous version, yielding the highest precision light curves at all Kp magnitudes of any publicly available K2 catalog. For most K2 campaigns, we recover the original Kepler precision to at least Kp = 14, and to at least Kp = 15 for campaigns 1, 5, and 6. We also de-trend all short cadence targets observed by K2, obtaining even higher photometric precision for these stars. All light curves for campaigns 0-8 are available online in the EVEREST catalog, which will be continuously updated with future campaigns. EVEREST 2.0 is open source and is coded in a general framework that can be applied to other photometric surveys, including Kepler and the upcoming TESS mission. ; Comment: 16 pages, 21 figures. Submitted to AJ. Source code and documentation available at https://github.com/rodluger/everest