Published in

Nature Research, Scientific Reports, 1(6), 2016

DOI: 10.1038/srep28801

Links

Tools

Export citation

Search in Google Scholar

Metal-Free C–H Alkyliminylation and Acylation of Alkenes with Secondary Amides

Journal article published in 2016 by Pei-Qiang Huang ORCID, Ying-Hong Huang, Hui Geng, Jian-Liang Ye
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractCarbon–carbon bond formation by metal-free cross-coupling of two reactants with low reactivity represents a challenge in organic synthesis. Secondary amides and alkenes are two classes of bench-stable compounds. The low electrophilicity of the former and low nucleophilicity of the latter make the direct coupling of these two partners challenging yet highly desirable. We report herein an unprecedented intermolecular reaction of secondary amides with alkenes to afford α,β-unsaturated ketimines or enones, which are versatile intermediates for organic synthesis and are prevalent in bioactive compounds and functional materials. Our strategy relies on the chemoselective activation of the secondary amide with trifluoromethanesulfonic anhydride (Tf2O)/2-fluoropyridine to generate a highly reactive nitrilium intermediate, which reacts efficiently with alkenes. This metal-free synthesis is characterized by its mild reaction conditions, excellent functional group tolerance and chemoselectivity, allowing the preparation of multi-functionalized compounds without using protecting groups.