Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 7(114), p. 1613-1618, 2017

DOI: 10.1073/pnas.1605660114

Links

Tools

Export citation

Search in Google Scholar

Evidence that the rate of strong selective sweeps increases with population size in the great apes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance The rate of genomic adaptation is determined by the rate of environmental change, the availability of beneficial mutations, and the efficiency of positive selection. The relative importance of these factors has been actively discussed. We address the questions using whole genome sequences of great apes, which have very different population sizes whereas their genomic architectures are highly similar. We infer that the impact of selection on the genomic diversity of a species increases with the effective population size, most likely due to the differential influx rate of beneficial mutations. This explanation is, among other possibilities, expected if adaptive evolution is limited by the waiting time for new favorable mutations in great apes.