Dissemin is shutting down on January 1st, 2025

Published in

SAGE Publications, Cell Transplantation, 6(26), p. 1103-1114, 2017

DOI: 10.3727/096368917x694868

Links

Tools

Export citation

Search in Google Scholar

Human muscle precursor cells overexpressing PGC-1α enhance early skeletal muscle tissue formation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Muscle precursor cells (MPCs) are activated satellite cells capable of muscle fiber reconstruction. Therefore, autologous MPC transplantation is envisioned for the treatment of muscle diseases. However, the density of MPCs, as well as their proliferation and differentiation potential, gradually declines with age. The goals of this research were to genetically modify human MPCs (hMPCs) to overexpress the peroxisome proliferator-activated receptor γ coactivator (PGC-1α), a key regulator of exercise-mediated adaptation, and thereby to enhance early skeletal muscle formation and quality. We were able to confirm the sustained myogenic phenotype of the genetically modified hMPCs. While maintaining their viability and proliferation potential, PGC-1α-modified hMPCs showed an enhanced myofiber formation capacity in vitro. Engineered muscle tissues were harvested 1, 2, and 4 weeks after subcutaneous injection of cell–collagen suspensions, and histological analysis confirmed the earlier myotube formation in PGC-1α-modified samples, predominantly of slow-twitch myofibers. Increased contractile protein levels were detected by Western blot. In summary, by genetically modifying hMPCs to overexpress PGC-1α, we were able to promote early muscle fiber formation in vitro and in vivo, with an initial switch to slow-type myofibers. Therefore, overexpressing PGC-1α is a novel strategy to further enhance skeletal muscle tissue engineering.