Published in

American Chemical Society, ACS Omega, 1(2), p. 218-226, 2017

DOI: 10.1021/acsomega.6b00304

Links

Tools

Export citation

Search in Google Scholar

Fabrication of a GNP/Fe-Mg binary oxide composite for effective removal of arsenic from aqueous solution

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Graphene nanoplates (GNPs) can be used as a platform for homogeneous distribution of adsorbent nanoparticles to improve electron exchange and ion transport for heavy-metal adsorption. In this study, we report a facile thermal decomposition route to fabricate a graphene-supported Fe-Mg oxide composite. The prepared composite was characterized using scanning electron microscopy, transmission electron microscopy, energy-dispersive spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy. Batch experiments were carried out to evaluate the arsenic adsorption behavior of the GNP/Fe-Mg oxide composite. Both the Langmuir and Freundlich models were employed to describe the adsorption isotherm, in which the sorption kinetics of the arsenic adsorption process by the composite was found to be pseudo-second-order. Furthermore, the reusability and regeneration of the adsorbent were investigated by an assembled-column filter test. The GNP/Fe-Mg oxide composite exhibited significant fast adsorption of arsenic over a wide range of solution pHs, with exceptional durability and recyclability, which could make this composite a very promising candidate for effective removal of arsenic from aqueous solutions.