Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(8), 2017

DOI: 10.1038/ncomms14024

Links

Tools

Export citation

Search in Google Scholar

p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Electron pairing in the vast majority of superconductors follows the Bardeen-Cooper-Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a $\textit{p}$-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a $\textit{p}$-wave triggered superconducting density of states in SLG. The realization of unconventional superconductivity in SLG offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K. ; Other ; The work was funded by the following agencies: Royal Society (‘Superconducting Spintronics’), Leverhulme Trust (IN-2013-033), Schiff Foundation, the EPSRC (EP/N017242/1, EP/G037221/1, EP/K01711X/1, EP/K017144/1, EP/N010345/1, EP/M507799/1, EP/L016087/1), ERC Grant Hetero2D, EU Graphene Flagship, COST Action MP-1201, MSCA-IFEF-ST No. 656485-Spin3, Outstanding Academic Fellows programme at NTNU, Research Council of Norway (205591, 216700 and 24080).