Published in

Nature Research, Nature Communications, 1(7), 2016

DOI: 10.1038/ncomms13941

Links

Tools

Export citation

Search in Google Scholar

Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In lead halide perovskite solar cells, there is at least one recycling event of electron-hole pair to photon to electron-hole pair at open circuit under solar illumination. This can lead to a significant reduction in the external photoluminescence yield from the internal yield. Here we show that, for an internal yield of 70%, we measure external yields as low as 15% in planar films, where light out-coupling is inefficient, but observe values as high as 57% in films on textured substrates that enhance out-coupling. We analyse in detail how externally measured rate constants and photoluminescence efficiencies relate to internal recombination processes under photon recycling. For this, we study the photo-excited carrier dynamics and use a rate equation to relate radiative and non-radiative recombination events to measured photoluminescence efficiencies. We conclude that the use of textured active layers has the ability to improve power conversion efficiencies for both LEDs and solar cells. ; Other ; We acknowledge financial support from the Engineering and Physical Sciences Research Council of the U.K. (EPSRC). J.M.R. and M.T. thank the Winton Programme for the Physics of Sustainability (University of Cambridge). L.M.P.-O. thanks the Cambridge Home European Scheme for financial support. L.M.P.-O. and J.P.H.R. also thank the Nano Doctoral Training Center (NanoDTC) of the EPSRC for financial support. M.A.-J. thanks Nyak Technology Limited for a PhD scholarship. F.D. acknowledges funding from a Herchel Smith Research Fellowship.