Published in

IOP Publishing, Semiconductor Science and Technology, 5(30), p. 055007, 2015

DOI: 10.1088/0268-1242/30/5/055007

Links

Tools

Export citation

Search in Google Scholar

Bilayer-induced asymmetric quantum Hall effect in epitaxial graphene

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The transport properties of epitaxial graphene on SiC(0001) at quantizing magnetic fields are investigated. Devices patterned perpendicularly to SiC terraces clearly exhibit bilayer inclusions distributed along the substrate step edges. We show that the transport properties in the quantum Hall regime are heavily affected by the presence of bilayer inclusions, and observe a significant departure from the conventional quantum Hall characteristics. In particular, we observe anomalous values of the quantized resistance and a peculiar asymmetry with magnetic field which was not observed before for graphene on SiC. A quantitative model involving enhanced inter-channel scattering mediated by the presence of bilayer inclusions is presented that successfully explains the observed symmetry properties.