Published in

European Geosciences Union, Atmospheric Measurement Techniques, 5(10), p. 1823-1830, 2017

DOI: 10.5194/amt-10-1823-2017

European Geosciences Union, Atmospheric Measurement Techniques Discussions, p. 1-18

DOI: 10.5194/amt-2016-411

Links

Tools

Export citation

Search in Google Scholar

Laser Ablation ICP-MS of Size-Segregated Atmospheric Particles Collected with a MOUDI Cascade Impactor: A Proof of Concept

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. A widely used instrument for collecting size-segregated particles is the micro-orifice uniform deposit impactor (MOUDI). In this work, a 10-stage MOUDI (cut-point diameter of 10 µm to 56 nm) was used to collect samples in Ljubljana, Slovenia, and Martinska, Croatia. Filters, collected with and without rotation, were cut in half and analyzed for nine elements (As, Cu, Fe, Ni, Mn, Pb, Sb, V, Zn) using laser ablation ICP-MS. Elemental image maps (created with ImageJ) were converted to concentrations using NIST SRM 2783. Statistical analysis of the elemental maps indicated that for submicron particles (stages 6–10), ablating 10 % of the filter (0.5 cm2, 20 min ablation time) was sufficient to give values in good agreement (±10 %) to analysis of larger parts of the filter and with good precision (RSE < 1 %). Excellent sensitivity was also observed (e.g., 20 ± 0.2 pg m−3 V). The novel use of LA-ICP-MS, together with image mapping, provided a fast and sensitive method for elemental analysis of size-segregated MOUDI filters, particularly for submicron particles.