Published in

American Institute of Physics, Journal of Applied Physics, 22(120), p. 223903

DOI: 10.1063/1.4971195

Links

Tools

Export citation

Search in Google Scholar

Influence of grain size and exchange interaction on the LLB modeling procedure

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Reliably predicting bit-error rates in realistic heat-assisted magnetic recording simulations is a challenging task. Integrating the Landau-Lifshitz-Bloch (LLB) equation can reduce the computational effort to determine the magnetization dynamics in the vicinity of the Curie temperature. If one aims that these dynamics coincide with trajectories calculated from the atomistic Landau-Lifshitz-Gilbert equation, one has to carefully model required temperature dependent material functions such as the zero-field equilibrium magnetization as well as the parallel and normal susceptibilities. We present an extensive study on how these functions depend on grain size and exchange interactions. We show that, if the size or the exchange constant of a reference grain is modified, the material functions can be scaled, according to the changed Curie temperature, yielding negligible errors. This is shown to be valid for volume changes of up to $± 40$ % and variations of the exchange constant of up to $±10$ %. Besides the temperature dependent material curves, computed switching probabilities also agree well with probabilities separately determined for each system. Our study suggest that there is no need to recalculate the required LLB input functions for each particle. Within the presented limits it is sufficient to scale them to the Curie temperature of the altered system.