Published in

American Chemical Society, ACS Nano, 6(7), p. 5595-5606, 2013

DOI: 10.1021/nn401968t

Links

Tools

Export citation

Search in Google Scholar

Conversion of bilayers of PS-b-PDMS block copolymer into closely packed, aligned silica nanopatterns

Journal article published in 2013 by Nathanael L. Y. Wu, Kenneth D. Harris, Jillian M. Buriak ORCID
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Block copolymer (BCP) self-assembly is an effective and versatile approach for the production of complex nanopatterned interfaces. Monolayers of BCP films can be harnessed to produce a variety of different patterns, including lines, with specific spacings and order. In this work, bilayers of cylinder-forming polystyrene-block-polydimethylsiloxane block copolymer (PS-b-PDMS) were transformed into arrays of silica lines with half the pitch normally attained for conventional monolayers, with the PDMS acting as the source for the SiO x. The primary hurdle was ensuring the bilayer silica lines were distinctly separate; to attain the control necessary to prevent overlap, a number of variables related to the materials and self-assembly process were investigated in detail. Developing a detailed understanding of BCP film swelling during solvent annealing, blending of the PS-b-PDMS with PS homopolymer, utilization of a surface brush layer, and adjustment of the plasma exposure conditions, distinct and separate silica lines were prepared. On the microscale, the sample coverage of PS-b-PDMS bilayers was investigated and maximized to attain >95% bilayers under defined conditions. The bilayer BCP structures were also amenable to graphoepitaxy, and thus, dense and highly ordered arrays of silica line patterns with tightly controlled width and pitch were fabricated and distributed uniformly across a Si surface. © 2013 American Chemical Society. ; peer reviewed: yes ; system details: This record was machine loaded using metadata from Scopus ; NRC Pub: yes