Published in

Nature Research, Nature, 6912(420), p. 193-198, 2002

DOI: 10.1038/nature01201

Links

Tools

Export citation

Search in Google Scholar

The heteromeric cyclic nucleotide-gated channel adopts a 3A:1B stoichiometry

Journal article published in 2002 by Haining Zhong ORCID, Laurie L. Molday, Robert S. Molday, King-Wai Yau
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cyclic nucleotide-gated (CNG) channels are crucial for visual and olfactory transductions1–4. These channels are tetramers and in their native forms are composed of A and B subunits5, with a stoichiometry thought to be 2A:2B (refs 6, 7). Here we report the identification of a leucine-zipper8-homology domain named CLZ (for carboxy-terminal leucine zipper). This domain is present in the distal C terminus of CNG channel A subunits but is absent from B subunits, and mediates an inter-subunit interaction. With cross-linking, non-denaturing gel electrophoresis and analytical centrifugation, this CLZ domain was found to mediate a trimeric interaction. In addition, a mutant cone CNG channel A subunit with its CLZ domain replaced by a generic trimeric leucine zipper produced channels that behaved much like the wild type, but less so if replaced by a dimeric or tetrameric leucine zipper. This A-subunit-only, trimeric interaction suggests that heteromeric CNG channels actually adopt a 3A:1B stoichiometry. Biochemical analysis of the purified bovine rod CNG channel confirmed this conclusion. This revised stoichiometry provides a new foundation for understanding the structure and function of the CNG channel family.