Elsevier, Journal of Supercritical Fluids, 3(55), p. 971-976, 2011
DOI: 10.1016/j.supflu.2010.09.030
Full text: Download
NOTICE: This is the author’s version of a work that was accepted for publication in Journal of Supercritical Fluids. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Supercritical Fluids, 55 (2011). http://dx.doi.org/10.1016/j.supflu.2010.09.030 ; Rosmarinus officinalis (rosemary) extracts were obtained in a supercritical pilot-scale plant. Based on experimental information available in the literature for analytical or low-scale processes, extraction temperature and pressure were selected to be 313 K and 30 MPa. At these extraction conditions, the kinetic behavior of the pilot-scale overall extraction curve were determined with respect to yield, antioxidant activity and carnosic acid content. The overall extraction curve was represented using Sovova’s model; the average deviation between measured and calculated yields was lower than 2%. Mass transfer coefficients in the fluid and solid phases were determined and were compared with previous data reported in the literature for low-scale rosemary supercritical extraction. A two-stage depressurization procedure was accomplished and the effect of both on-line fractionation and extraction time on the antioxidant activity of the samples collected was studied. The antioxidant activity of the different fractions could be straight correlated with the carnosic acid content with a regression coefficient of 0.92