Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS ONE, 7(8), p. e70924, 2013

DOI: 10.1371/journal.pone.0070924

Elsevier, Journal of the Neurological Sciences, (333), p. e689

DOI: 10.1016/j.jns.2013.07.2380

Links

Tools

Export citation

Search in Google Scholar

BAFF Controls Neural Cell Survival through BAFF Receptor

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Various neuroprotective factors have been shown to help prevention of neuronal cell death, which is responsible for the progression of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). However, most of these therapeutic potentials have been tested by administration of recombinant proteins, transgenic expression or virus vector-mediated gene transfer. Therefore, it remains to be clarified whether any endogenous factors has advantage for neuroprotection in a pathological nervous system. Here we show the role of BAFF-R signaling pathway in the control of neural cell survival. Both B cell–activating factor (BAFF) and its receptor (BAFF-R) are expressed in mouse neurons and BAFF-R deficiency reduces the survival of primary cultured neurons. Although many studies have so far addressed the functional role of BAFF-R on the differentiation of B cells, impaired BAFF-R signaling resulted in accelerated disease progression in an animal model of inherited ALS. We further demonstrate that BAFF-R deficient bone marrow cells or genetic depletion of B cells does not affect the disease progression, indicating that BAFF-mediated signals on neurons, not on B cells, support neural cell survival. These findings suggest opportunities to improve therapeutic outcome for patients with neurodegenerative diseases by synthesized BAFF treatment.