Published in

Oxford University Press (OUP), The Journal of Infectious Diseases, 9(199), p. 1323-1326

DOI: 10.1086/597802

Links

Tools

Export citation

Search in Google Scholar

Antiretroviral Drug Resistance in HIV-2: Three Amino Acid Changes Are Sufficient for Classwide Nucleoside Analogue Resistance

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Genotypic surveys suggest that human immunodeficiency virus type 1 (HIV-1) and HIV-2 evolve different sets of mutations in response to nucleoside reverse-transcriptase inhibitors (NRTIs). We used site-directed mutagenesis, culture-based phenotyping, and cell-free assays to determine the resistance profiles conferred by specific amino acid replacements in HIV-2 reverse transcriptase. Although thymidine analogue mutations had no effect on zidovudine sensitivity, the addition of Q151M together with K65R or M184V was sufficient for high-level resistance to both lamivudine and zidovudine in HIV-2, and the combination of K65R, Q151M, and M184V conferred classwide NRTI resistance. These data suggest that current NRTI-based regimens are suboptimal for treating HIV-2 infection.