Published in

Springer, Archives of Microbiology, 11(194), p. 943-948, 2012

DOI: 10.1007/s00203-012-0829-7

Links

Tools

Export citation

Search in Google Scholar

Genome analysis and heterologous expression of acetate-activating enzymes in the anammox bacterium Kuenenia stuttgartiensis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Anaerobic ammonium-oxidizing bacteria were recently shown to use short-chain organic acids as additional energy source. The AMP-forming acetyl-CoA synthetase gene (acs) of Kuenenia stuttgartiensis, encoding an important enzyme involved in the conversion of these organic acids, was identified and heterologously expressed in Escherichia coli to investigate the activation of several substrates, that is, acetate, propionate and butyrate. The heterologously expressed ACS enzyme could complement an E. coli triple mutant deficient in all pathways of acetate activation. Activity was observed toward several short-chain organic acids, but was highest with acetate. These properties are in line with a mixotrophic growth of anammox bacteria. In addition to acs, the genome of K. stuttgartiensis contained the essential genes of an acetyl-CoA synthase/CO dehydrogenase complex and genes putatively encoding two isoenzymes of archaeal-like ADP-forming acetyl-CoA synthetase underlining the importance of acetyl-CoA as intermediate in the carbon assimilation metabolism of anammox bacteria.