Published in

American Society for Clinical Investigation, Journal of Clinical Investigation, 1(124), p. 209-221, 2013

DOI: 10.1172/jci71090

Links

Tools

Export citation

Search in Google Scholar

Heparan sulfate deficiency disrupts developmental angiogenesis and causes congenital diaphragmatic hernia

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Congenital diaphragmatic hernia (CDH) is a common birth malformation with a heterogeneous etiology. In this study, we report that ablation of the heparan sulfate biosynthetic enzyme NDST1 in murine endothelium (Ndst1ECKO mice) disrupted vascular development in the diaphragm, which led to hypoxia as well as subsequent diaphragm hypoplasia and CDH. Intriguingly, the phenotypes displayed in Ndst1ECKO mice resembled the developmental defects observed in slit homolog 3 (Slit3) knockout mice. Furthermore, introduction of a heterozygous mutation in roundabout homolog 4 (Robo4), the gene encoding the cognate receptor of SLIT3, aggravated the defect in vascular development in the diaphragm and CDH. NDST1 deficiency diminished SLIT3, but not ROBO4, binding to endothelial heparan sulfate and attenuated EC migration and in vivo neovascularization normally elicited by SLIT3-ROBO4 signaling. Together, these data suggest that heparan sulfate presentation of SLIT3 to ROBO4 facilitates initiation of this signaling cascade. Thus, our results demonstrate that loss of NDST1 causes defective diaphragm vascular development and CDH and that heparan sulfate facilitates angiogenic SLIT3-ROBO4 signaling during vascular development.