Dissemin is shutting down on January 1st, 2025

Published in

ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Volume 2

DOI: 10.1115/smasis2011-5168

Links

Tools

Export citation

Search in Google Scholar

Bio-Inspired Flow Sensors Fabricated From Carbon Nanomaterials

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Carbon-based flow sensors can be made by embedding carbon nanotubes (CNT) into a polymeric substrate. Specifically, when a conductive aqueous solution flows over the surface of the exposed CNT, a flow-dependent voltage is generated. The carbonaceous flow sensors fabricated in our work were all tested in salt water (5% NaCl). In order to measure the surface coverage of the CNT coated sensors, the electrical resistance across the surface of each sample was measured. Electrical Impedance Spectroscopy (EIS) measurements were also carried out in order to understand the electrical relationship between the sensor and the salt water. In order to study the surface topology and morphology of the flow sensors, scanning electron microscopy (SEM) was used. Voltage measurements of sensors with different levels of resistance were tested in varying fluid velocities. The least resistive sensor showed small, but detectable changes in voltages, while higher resistance sensors showed less response. On the other hand, the average current did not change with varying flow conditions for any of the sensors.